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PREFACE 

In January 1970, the personnel of the Gravity Boiling 

Project included six new people, all generally unfamiliar with 

Zuberk hydrodynamic theory of the extreme boiling heat fluxes, 

Since a great deal of the work we do depends upon the concepts 

that make up this theory, some remedial work was required, We 

therefore agreed to meet for three one and one-half hour infor- 

mal lectures, first to review some of the underlying wave t b ~ e o r y ,  

and then to trace Zuberqs predictions. 

Vijay Dhir then undertook to put these talks into crder, 

filling in the missing words and equations, correcting zrrers ,  

and improving some of the logic. We hope that the result t ' 7 i . I - 1  

serve in the future as a kind of instructional package for other 

people who wish to begin work with the extreme pool b o i l i n s  hea t  

fluxes. 

The first Section of the report (pages 1 through 19) pro- 

vides a brief background in the Taylor and Helmholtz stability 

of waves, This discussion is slanted toward an app1icatio.n to 

the hydrodynamic theory. Nevertheless, the reader with a back- 

ground in this material should comfortably be able to b e g i x  dlr- 

ectly in Section 11. 



I, DYNAMICS AND STABILITY OF SMALL GRAVITY AND CAPILLARY KNVESX -- 

A, Gravity Waves 

I. Wave Motion 

A wave motion of a liquid acted upon by gravity and ha\/-- 

ing a free surface is a motion in which the elevat' iori of the 

free surface above some chosen fixed horizontal plane varies. 

We shall restrict our remarks to two-dimensional motion far 

the present. 

Fig. 1 Wave Motion on the Free Surface of a Liquid 

With reference to Fig. 1 we shall take the axis of x to 

be horizontal and the axis of y to be vertically upwards: the 

motion of the free surface governed by equation (1) 

= a sin(kx - w t )  (1) 

is called a simple harmonic progressive wave where k = .2n/Af 

*A good general reference is L. M. Milne-Thornson, Theore t i ca l  ---- - 
Hydrodynamics, 111 . 



the wave number, and wis the frequency. 

2. Kinematical Condition at the Free Surface 

Considering a fluid of depth h in which waves of h e i q k t  

q = q(x,t) above the mean level are propagated, the equatLol~ 

of the free surface is 

As the surface moves with the flnid, following a fluid partxcle 

we can write 

Assuming a linearised theory in which squares and products of 

variable parts of all quantities and their differential eoeffic- 

a 
ients are negligible, and, in our case taking the slope - ax bJ 

of the profile to be small, we get 

Assuming the motion to be irrotational we can define a ~ o t e " ~ t i a ~ ~  

function,$,and a stream function,+, so that 

Equation (5 )  is kinematical surface condition for wave pro- 

files of small height and slope. 

Now let us choose a complex potential of the form 

W = 4 + i$ = A  cos(kz - wt) 
= AICOS (kx-wt) cosh ky-i [sin Ckx-~\t  1 sinh kyl 1 



and determine what A must be to fit the boundaries, T h e  pocen- 

tial and stream functions for this potential are 

$ = -A sin(kx - wt) sinh ky 

At the surface $ becomes 

qsurface = -A sin(lcx - wt) sinh kh 

where we have assumed y = h + u - h since u is small. However 

TI = a sin(kx - wt) I -  i- I J 

Substituting equation (1) in (5) we get: 

A = 
aw/k 
sinh kh 

Thus 

ac 
W =  sinh kh cos(kz - wt) 

We have derived this result from purely kinematic conditions and 

no hypothesis has been made as to conditions above the w i , e  prs- 

file, 

3 ,  Pressure Condition at the Free Surface 

Let p be the pressure inside the liquid and p ,tile p ~ ~ ~ s s u r e  i 0 

just outside. Assuming the fluid to be inviscid, we car r7ri.c.e 

the equation of motion as 



Integrating this with respect to position we get 

c l k )  can be taken to be independent of t by incorporating axy ~ l r e  

variable in Also if po be the constant outside pressure az:-  

ing at the interface, we can absorb it in 4 without any loss e2 

generality and finally write 

' 2  
Neglecting which is negligible in small waves, we obtn i .1  

The interface between two fluids which do not mix kehaves 2s if 

it were in a state of uniform tension. This tension--.caLlet3 s ~ r -  

face tension--depends on the nature of the two fluids and on ten- -  

perature. We now wish to see what effect this tension Inas 

on p. Figure 2 shows the surface tension and pressure forces act- 

ing on an element 8s of arc of a cross-section of a cylindrical 

surface forming the interface between two fluids. If 38 is the 

angle between the tangents at P and S, then resolving the forces 

along the normal at P gives approximately 



where % y i s t h e  r a d i u s  of c u r v a t u r e .  Using t h e  express io r ,  f o r  

F i g .  2 F o r c e s  Ac t ing  on t h e  I n t e r f a c e  between Two E m r n i s c i S 1 z  
F l u i d s  

s i n c e  

S u b s t i t u t i n g  e q u a t i o n  ( 9 )  i n  ( 8 )  w e  g e t  

I . ~ b ~ ~ ,  we I n  t h e  s i m p l e s t  c a s e  i n  which w e  n e g l e c t  t h e  s u r f a c e  te- " 

g e t  a t  t h e  f r e e  s u r f a c e  



Notice that this equation is independent of fluid d e r , ~ ~ ;  k~ 

and gives surface elevation when @I is known, 

At the free surface 

As q is small, the second term on right hand side can also be 

neglected and we get at the surface 

Therefore equation (11) becomes at the surface 

and 

4 ,  Surface Waves 

Combining the kinematical and pressure conditi~ns, 

we get 

Substituting the known values of 4 and $ in equation (141 -he gc- 

the wave speed, cZ; 



Now t ak ing  s p e c i a l  ca se s  

(i) Waves on a  very deep f l u i d  (h>>X) : 

I n  t h e  L i m i t  a s  kh-, t anh  kh -+ 1, t h e r e f o r e  

e i i j  Waves on a very  shal low f l u i d  (kh<<LE : 

En t h e  l i m i t l  a s  kb becomes small 

Example T i d a l  waves a t  s e a  (shal low waves) 

Typica l ly :  a  = 3 ft 

h = 12 ,000  ft 

Therefore ,  

Thus for very  deep l i q u i d  (h/h<<lk c i s  p r o p o r t i o n a l  t e J /  ana ic;r 

shal low l iqu id .  ( h / h > > l )  c  = t''$ i e c t ends  t o  
7"" a iCn5" ,y~ t  

va lue  which it cannot  exceed, The r e s u l t s  a r e  shown ic Figz~e ;, 



Fig. 3 Ef f ect of Depth of Liquid on Wave Velocity 

5. Gravity Waves in Two Fluids (Waves at an Interface) 

Consider a fluid of density, p ', an6 depth, h ', f l o w i r : g  ~ [ i e k  

constant velocity,U\,over a Payer of fluid of den~ity~~~ar-ca 

depth,h,which flows with constant veloeity,U, the f l u i d s  Se i r s  

bounded above and below by rigid horizontal planes as s - ~ o w ~  i c  

Figure 4. 

To study the si~ation that a. wave of small elevatfos, 

rl = a sin (kx - w t )  ma17 be propagated at the interface ' i r ~ ~ t t i  -~eLo- 

city, c, we impose on the whole mass of f Zuid a velocity c ,- s ~ ; o s ~ _ t o  to 

thedirection of propagation; thus reducing the profile kc. res t  

and changing the velocities of sstear~sto UB-c and U - c ,  



F i g .  4 I n t e r f a c e  between Two D i f f e r e n t  F l u i d s  Flowing w,?::, 
D i f f e r e n t  V e l o c i t i e s  

The complex p o t e n t i a l  f o r  t h e  lower fluid i s  

w = - ( u - c > z  - a  (U-c) 
s i n h  kh eosk ( z + i h )  

This complex p o t e n t i a l  s a t i s f i e s  t h e  cond i t i on  t h a t  stream:-re 

+=O corresponds t o  n = a s i n  kx. Also t h e  p o t e n t i a l  f u n c t i u r  6 

and s t ream f u n c t i o n , $ , s a t i s f y  Lap lace ' s  Equation.  

S i m i l a r l y  we w r i t e  t h e  complex p o t e n t i a l  f o r  t h e  upper f L 1 ~ - 1 .  

by r e p l a c i n g  h with  -hq: 

Theref o r e  

W' = - (U ' - c ) z  + a'u'-c) c o s k ( z - i h ' )  
s i n h  k h P  

4 = -(U-c)x - a (U.--c) 
s i n b  kh eoskx eosh k (y+h) 

4 '  = - (u -c )x  -+ C O S ~ X  C O S ~  k ( y - h t )  
s i n h  kh7 

a @  u = = - (U-c) + ka (U-c) 
s inkx  cash  k ( p h )  

a @ '  u L = = - (-(w $--el  - ka'U'-c '  s inkx  cosh k  (y-hq ) 
s i n h  kh 



Neglecting terms containing a2 and applying the conditioi; x h ~ t  2: 

tk  interface,^ = n and vl<<h, we get at the interface 

u2 = (U-c) [ I - i k n  coth kh] 
" * ". . :; 

2 
u' = ( U @ - C ) ~  [lf2kn coth kh'l I I?\ 

Now applying Bernoulli's Equation at the interface for t he  C~I~CJ 

fluids we have 

l p w  + - p'uJ * p v g n  - 
2 

- constant 

and 

p'-pu 
2 

- constant + pgri - 

But the pressure must be continuous at the interface (assun::-rg 

no surface tensionIr so 

P = P* 

Subtracting equation (20) from (19); substituting values af A 2 

and u t 2  from (17) and (18) and assuming that free s t reair  R i ! i e k i z  

energy per unit volume for the two streams is the same, ~e get 

the condition 

p'k(~'-c)~ coth kh' +- pk(~-c)' coth kh = g(p-pn) 

If U = U L  0 [both fluids stationary] , we get 

Lf the depth is great, i.e. kh and kh' >> 1, we get 



The condition for stability of waves is that c should be ~ e a ,  

Thus p must be greater than p i  i.e. the heavier f l u i d  TJS: ane p 2- 

underneath. 

B e  Ca~iLlarv-Gravitv Waves 

We proceed with the assumption that fluid depths are I s r a p  

and the waves are unsteady and of small amplitude. 

We define: 

@ = U x + Q ,  - and Pt - -P,'P 

where 

4 = perturbation potential function 

U = free stream velocity 

po = static pressure 

as  s-a.;-c p = perturbation or disturbance pr, 

As the governing equations are linear under small wave ass-Jrnpt:~cns 

we can treat one component ofthe Fourier spectrum, throivlrisig 3~31) 

others,and write for ka small 

'1 = a exp[i (wt-kx) ( 2 3  '1 

The complex potentials that match this form of II are 

0 ' = -i ( U L - e )  a exp [-ky + i (wt-kx) 3 (2';) 

These potential functions ace correct at infinity and at the k r t e e r -  

facerand they satisfy Laplace's Equation, 

Writing the pressure equation 



+ -t 

and defining u = U + ~_r = '?"Q 

2 Neglecting terms on the order of11 we rewrite the pressure eq:j;ia- 

tion as 

But in the free stream - Po - - u2 + constant. 
P 2 

Hence the pressure equation for the lower fluid becomes 

Similarly for the upper fluid 

Subtracting (28) from (27) and substituting values for Ot, 4 - .  
<- 

$xr $A ,we get at the interface,y=O 
bw-kU ")w - (o-ku)u]n + p [ ( P ' - P I ~ ~  + P [  - (th--j<Lt* \ ~ / ' 7 - ~  .l: " :,-I, - 3 

But e 

Cr p-p" - [- Cr 
a 2 

+-I  andR = T = - k n .  
Iixy 

R 
tr XY ax 

Were we have assumed that the effect of transverse surface  ;lensisii* 

is additive to the effect of axial surface tension. Therefore 

E 
Multiplying throughout 

by GP+P~)  and solving for the ve - -o r l t y  

- - - 
k 

cF we get 



i ii iii iv .. , 

Equation ( 3 0 )  is a very basic result to which we shall sften re>i:--, 

The significance of the terms on the right hand side is- 

(i) Mass mean velocity. 

(ii) Gravity term acts to smooth at-the irregularitie:: \;r,n,:r ".he 

heavier fluid is below the lighter fluid, and erll>aiace~ 

irregularities when the light fluid is bebow, 

(5) Axial curvature acts to smooth& the irreg;~r&ar:~-c-L ee 

(iv) Transverse curvature acts to aqtent the i rr-zglu~ ;r"+L.2=. 

(v) Inertia term acts to augment the irregwla.ri.ti.es. 

C .  Stability of Waves 

We are interested in stability of waves of the type 

-ikx ikct 
ri = ae e 

ri will grow without baund if c isanegative imaginary P I  a ~ r a b e r  o r  

includes a negative imaginary term, Thus when the t e r ~  ~ n d z r  trc 

radical in equation (30) passes through zero ( i . e .  goes from porl- 

t i v e  to negative), k assumes its critical or maximum stable v l S s a  

Actually the physical system will collapse in th15 i'~'-. .!.~nl-c~; 

2n or 'host dangerousl'wave lengthdd = - . This is the v a i ~ e  .f A ,  
kd 

for which / w  / is maximum (i. e. du = 0) and for which n grows 30s; x 
rapidly, 



P, Taylor" Instability 

When two differen.t fluids having a cornon plane k o ~ - l d a r k  

are accelerated in a direction perpendicular KO the boi;ifiL1az I = 

any small irregularities in the boundary will tend to charge in 

shape. If the acceleration is directed from the more dense  tc, L - -  

less dense medium, the irregularities will tend to srnaot,h. - ~ c t ;  E I I : ~  

if the acceleration is directed from less dense to morc Je-se 

medium, the irregularities of the interface will tend tc gro~89, 

This effect is known as Taylor" Instability. 

Now from our previous analysis we calculate the cr L t l , - a l  

and most dangerous wave lengths. 

Putting U = U b  0 in equation ( 2 9 )  and assuming mo ccrv- 

ature in transverse  direction[^ = = r  elementary Taylor's ;asti;-- 
tr 

bilityl we get 

Here we have taken the heavier liquid as below the l i c n z e r  14.- 

Putting c L  = O we get 

For k<k,, the R.H.S. of (31) is negative and the interf-ce is 

uns tab he. 



Example : Calculate cr i t ica l  wave length fo r  water and a i r  interface at 

normal temperature and pressure: 

2 4 
= 1 .935 'ibf sec / t 3 4 

p ' = 0.00234 lbf sec /ft 

Therefore 

Now s e t t i n g  

we g e t  
1 

k,. = - 
JT~- 

Actually the system w i l l  collapse with this most dangerous wave length. ~~r 

t h e  water and a i r  interface i n  the preceding example this v a l u e  is  

A = 1 . I 8  inches 
d 

2. Helmholtz Instability 

This involves the study of instability of the interface wnsn 

either of the two fluids i s  moving i n  a direction perpendicular to the 

acceleration of the interface, t he  flow of a gas with velocity Ubvep- .  

water, f o r  example. 

Here we discuss either of the two situations: 

(i) Surface Tension Neglected 

(ii) Gravity i s  Neglected 

(i) Surface Tension Neglected: Equation (30) reduces to the f o r m  

- P'U" c - -  * g P - P '  - P,P ' ,  u'$ 
P +P' K P + P "  (P + P') 



Setting the term under the radical sign equal to zero we c e t  

and setting 

Examp1.e: Obtain t3-e critical and most dangerous wave lengths for 

air moving over a lake with a speed 30 ft/sec, 

= 0.416 ft ? 5 inches 

Thus Helmholtz instability only contributes short wavelei~gth 

choppiness to the lake's surface, 

j i i )  Neglecting Gravity: Rewriting equation ( 3 0 )  w l t h  L, = 3 

infinite transverse curvature,and zero gravity we get 

Setting the terms under radical sign equal to zero we get 



and setting 

we get 

D, Three Dimensional Cases 

All our previous analysis was based on two dimensional 

waves as we neglected the effect of transverse eurvatcre, AE- 

though the transverse curvature effect makes the prsbPeK three- 

dimensional, still a two dimensional analytical model can be es- 

tablished to describe this, The effect of surface tension along 

the curvature in the transverse direction is same as an add i " "   LEO^- 

a1 component of pressure acting to push the interface inwards, 

Consider a cylinder of liquid--say a jet moving with a 

velocity U , as shown in Fig. 5. U can be set equal tc zero 
g g 

without any loss of generality by moving the frame of reft "renee 

along the jet with the speed of the jet, and we write 

P-Pf = - o - Apt exp [i (wt-kx) 1 



I I 
+-,+ - - - - -  
I I 

Fig. 5 Jet Moving in a Stationary Fluid of Negligible Sensit-,. 

where a stationary component of transverse pressure has 'a?r 

added to both sides, and 

'ptr = amplitude of transverse pressure os::~IZat:c~.n 

exp [i (wt-kx) l denotes disturbance effect. 

The transverse pressure ranges from at the peaks to ,*z- a-c 
~t-a . . 

thetroughs, therefore it has an amplitude given by 

Substituting all the desired values in equation ( 3 0 )  l1ve g e i  

But g = 0 in the jet. Therefore we get, 

The critical value of k is thus 



The c r i t i c a l  wavelength i s  equa l  f-o t h e  c i rcumference of ."_e 

j e t  i n  t h i s  case .  

S i m i l a r l y  w e  can g e t  t h e  most dangerous wave l e n c j t h  Sy 

d w  p u t t i n g  - = 0: 
dk 

However, ou rdeep  water assumption i s  n o t  v a l i d  he re  as t r i e  

j e t  i s  n o t  r e a l l y  very  deep.  I n  t h i s  c a s e  R kd i s  n o t  > >  i. 

Rayleigh 121 analyzed t h i s  problem w i t h o u t u s k g  t h e  dc :e~  

water  assumption and g o t  

and 
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11. THE PEAK AND MINIMUM B O I L I N G  HEAT FLUXES 

A. The Model 

F igure  6 shows a  t y p i c a l  p l o t  of heat flux against i -c;u, i  

supe rhea t .  Various b o i l i n g  regimes a r e  also shown, 

r a n s i t i o n  Film 

regime regime 
b o i l i n g  

-- ---+ - 
p l a t e  

CI 1 *3- i 

Fig .  5 Typica l  b o i l i n g  curve  and regimes of b o i l i n g  

C o n s i d e r b o i l i n g  i n  t h e  t r a n s i t i o r a a l  b o i l i n g  r eg ion  oc- 

noted by p o i n t  A (about  3 0 0 a F  above s a t u r a t i o n  te.mperr=t~:re Tor- 

wa te r  a t  one atmosphere p r e s s u r e ) .  The s p i k e s  of liquid g e t  

c l o s e  t o  t h e  s u r f a c e  and evapora te  r a p i d l y  gene ra t ing  a i o h  of 

vapor.  The l i q u i d  vapor i n t e r f a c e  i s  hydrodynamically unst&ci~ 

because t h e  a c c e l e r a t i o n  i s  d i r e c t e d  from t h e  vapor to c h z  li- 

quid .  F igs .  7a t o  7d show how t h e  l i q u i d  vapor i n t e r f a c a  ? s h ~ v z ! s  

i n  t h e  t r a n s i t i o n a l  b o i l i n g  r eg ion .  



- - - - 
-. Liquid __ 

- d 

Fig. 7 Typical Interface Shapes in Transitional Boiling 

7a The interface has random perturbations distributied o:Tsr a 
spectrum of wave lengths. 

7b The wavelength near the "most dangerous'hne is the f i r s ?  LO 

achieve a finite amplitude, Therefore, as a reswlc of 
Taylor instability, interface takes a finite geonrotr:-cal 
shape. 

7c The interface consists of spikes of liquid and of ri?i,.ndid 1:- 
qions similar to cylindrical bubbles which rise i n t c  chs  
liquid. In their downward fall, the spikes approach the 
heater surface and rapidly evaporate, causing an explosive 
flashing to occur at that point. 

7d As the minimum heat flux is approached, the interface sJ:ab*- 
Pizes into a regular Taylor unstable wave form, As c. row 
of bubbles is released, an unstable interface is fornsd 
again. The downward flow of liquid, instead of occorr inc 5x7 
spikes, will be formed as the trough of the wave. T h e r e f s r i ,  
successive rows of bubbles above the wave will be displace2 
by half a wave length. 

7e Near the peak heat flux, the rate of evaporation is very h ig i l .  
The release of bubbles appears like vapor expiosiars, The 
interface rushes towards the surface, but due to rapid va:- 
oration, it is pushed back violently and vapor is released 
in the form of explosive jets. The vapor speed at w?~:h 
jets stabilize is given by Helmholtz instability. 

The strategies we shall follow in predicting q,,, and q3 -- - 
t l.n 

the limiting heat fluxes at either end of the transition ~ n q i ~ n  -- 

will go as follows: 



a. Prediction of Peak Heat Flux (qmaxE: 

1. Assume a geometry of vapor out£ low (jets) . 
2. Find U for which jets become Helmholtz unstable. 

4 
3. Find amount of heat flux, q, required to generate e-iaugh 

vapor to give this U in this geometry. 
g 

b. Prediction of Minimum Heat Flux (qmin): 

P. Assume geometry of bubble pattern. 

2. Estimate the minimum frequency of wave eonsistan:t with the 

"most dangerous" wave lengthpXd. 

3. Find heat flux, q ,  consistant with vapor outflaw r e q ~ i r e d  

to give this frequency. 

B. Minimum Heat Flux on a Flat Plate 

1. The Geometry. Figure 8a shows the shape of interface in .~l:; 

minimum heat flux range. The wave which achieves the f F n i t e  

amplitude is the "most dangerous" one. The bubbles t haz  are 

forming or leaving the heater surface are spaced a distance 

Ad apart. Figure 8b shows top view of the bubble formation 

on the flat plate heater. Squares show the bubbles that are fcrp;- 

ing, whereas circles show the bubbles leaving the surface, As 

the bubbles separateat the nodes, we can safely assuIv.e them to 

'a be spheres of radius - 
4 - 

As is seen from Figure 8b, there is one bubble of volume 

4TT 3 Ad 2 2 - (-1 f t per cycle per (--) ft . 
3 4 2 



P i g .  8 Bubble p a t t e r n  i n  minimum h e a t  f l u x  r eg ion .  

Therefore ,  

4~ 3 
3x64 Ad - 'rr 

volume f l u x  = f  
f t 3  

b  l / 4  A d  
2 - f b T 2 h d  f t  2 s e e  

where f b  = frequency a t  which bubbles  l eave  
h e a t e r  s u r f a c e .  

2 .  Frequency, Taking t h e  r a t e  of p e n e t r a t i o n  of the vapor 

r eg ion  i n t o  t h e  l i q u i d  the same a s  t h a t  p r e d i c t e d  by Taylor's in-- 

s t a b i l i t y ,  t h e  r e l a t i o n  between t h e  frequency of bubble release 

drl fb"nd t h e  r a t e  of p e n e t r a t i o n  of t h e  i n t e r f a c e  - "t " thc2n becol-iiea 

l d i l -  i f = - - - - -  
b Ad d t  A d  max rl 

Lewis [31 observed exper imenta l ly  t h a t  t h e  ampli tudelq,of the 

wave i n c r e a s e s  a t  an  exponen t i a l  r a t e  u n t i l  it reaches  the i2 ~ n i z ,  of 

l i n e a r  wave behavior  a t  il = 0 . 4  A d .  During t h e  expozen t i a l  



growth, the disturbance amplitude,n,increases gram an i n f i n l t -  
^ I?  

tesimal value to approximately 0.4 Ad. Zuber 1 4 1  averaged "J cr t 

overthis value and he got, 

- - 0.2i wmax 

Therefore, 
fb = O.2i umax 

Later on Berenson E51 showed that Zuber should have time aver- 

dn aged - rather than averaging over q. Such anaverage csnna-l  he 
dt 

done because of limited information. He therefore noted t h a t ,  the 

result would be of the form 
- fb - ibwmax 

where b is determined experimentally. 

3. Minimum Heat Flux (qmin) , 

Latent Heat Transport Volume of Vapor 
qmin = ( Unit Volume ' ' Area x Time 1 

- - h 0.2 i wmax 12 T Ad 
Pg f g  

From Equation (33) 

and from Equation (31) 



Hence 

Zuber got a value of qmin which is half of this value, TLe 

basic difference lies in the fact that he assumed two ,mbbH.es 

2 
were relessed in an area,Xd,whereas we claim that fou,. ars released. 

The matter is not important, though , since Berenson shows zhak t - ~ a  

experimental constant must be 0.09 instead of 0.354. 

C. Peak Heat Fluxes on a Flat Plate 

I, Geometry. Figure 9a shows the form of the jets i;"ene,razed 

from the heater surface at peak heat fluxes. Figure 9b shews 

the top view of such jets on a fiat plate heater. The sgacrr-cj 

of the jets is given by Taylor" instability and the wave I..:-:~tn 

at which the jets become unstable would be the shortest c l ~ e  

that would be Rayleigh unstable. Helmholtz instability will i?Lvt-. 

the critical speed of such jets. 



Fig, 9 Spacing of jets in peak heat flux region. 

L 
There is one jet in an area Ad , therefore, 

Area of outflow of vapor = T ( -  
2 

4 16 d 

L 
Area of inflow of liquid = (1 - I '  rn) Ad 

Hence, by continuity (FAU = constant) 

2. Critical Velocity of Jets. The shortest wavelength 

which jets become Rayleigh unstable is given by equatlnn ( I C !  as 



But A from equa t ion  ( 3 3 )  i s  d 

t h e r e f o r e ,  

Now s u b s t i t u t i n g  t h e  c r i t i c a l  wave number from equation (46: 

i n t o  equa t ion  ( 3 0 ) ,  we g e t  .the c r i t i c a l  v e l o c i t y  U of t h e  jez c2n- 
g@ 

s i d e r i n g  wave propaga t ion  v e l o c i t y t o  be  zero ;  

'b where  t h e  term in b r a c k e t s  i s  ,-,, P at low p r e s s u r e s  an3 :: 1 - 1 3  

a t  c r i t i c a l  p r e s s u r e ,  

3 Maximum Heat Flux . 

where 
'Tr 

A = a r e a  of t h e  j e t  = - 2 
g 1 6  Ad 

2 
A = a r e a  of t h e  h e a t e r  subtenddl;7y.one jet = A, 

iC- 

t h e r e f o r e ,  



Borishanski  [ 6 1  obta ined  an experimental  exp res s ion  f o r  qXi,$ 

(2 max = 0.13 p i ' 2 h f ~ ~ g  !pf-Pg) 

D. C y l i n d r i c a l  Geometry 

To  p r e d i c t  t h e  peak and minimum Pleat f l u x  on a  cy l~ l ?d r l ca : :  

h e a t e r ,  t h e  e f f e c t  of f i n i t e  t r a n s v e r s e  cu rva tu re  has to .ae 

t aken  i n t o  account .  F igu re  10 shows f i l m  b o i l i n g  near rhe 

minimum h e a t  f l u x  on a h o r i z o n t a l  c y l i n d r i c a l  heater a s  ~ - s s u ~ s e Z .  

by Lienhard and Wong [ 71 .  The vapor b l a n k e t  surrounding -he 

h e a t e r  i s  assumed t o  be s u f f i c i e n t l y  t h i n  t h a t  t h e  saa l lesr  

r a d i u s  of  i n t e r f a c e  i s  n e g l i g i b l y  larger than  t h e  r a d i x ,  R, 

of t h e  h e a t e r .  

F ig .  1 0  I n t e r f a c e  geometry of minimum h e a t  f l u x  on a horizontal 
c y l i n d r i c a l  h e a t e r .  



A simple two dimensional model can be used to find t r e  

"most dangerous" and critical wave lengths with the ef- 

fect of transverse curvat~mre treated as at? additional presx i -&re  

difference component, Apt, 

- 0 

%r - S i l  

The volume flux of vapor is 

vapor flux = 
2 4 T  hd3 - (---I 

fb P7TRhd 3 4 

And the bubble frequency is fb = b iumax as in the ease of a 

flat plate . Therefore, if we follow Zuber for the rremszr a rc  set 

From equation (30) after substitution of equation (49) and set- 

* dw tlng - = 0, we get 
dk 

Thus 

and 

Equation (50) represents existing experimental results w e l l  Lf r r 7 e  

use b = -0525 instead of 0.2. The result will be to replace 

n2 4/7/60 with 0.057 (see [71) . 
The reader interested in additional work on both q,,, ;mc 

q,in on cylinders should consult references [ 8 1  and 191 . 



APPENDIX A 

Nomenclature 

A s u r f a c e  a r e a  of t h e  h e a t e r  

Ag 
a r e a  of vapor j e t  

a ampli tude of t h e  wave 

c wave v e l o c i t y  

f b  frequency of bubble r e l e a s e  from h e a t e r  s u r f a c e  

g a c c e l e r a t i o n  due t o  g r a v i t y  

h dep th  of t h e  f l u i d  

h  
f g  

l a t e n t  h e a t  of evapor i za t ion  

k wave number (-) 2 .rr 
h 

k c  c r i t i c a l  wave number 

kd "most dangerous" wave number 

Helmholtz c r i t i c a l  wave number 

P  p r e s s u r e  

(3 h e a t  f l u x  

qmax peak h e a t  f l u x  

qmin minimum h e a t  f l u x  

R r a d i u s  of c y l i n d r i c a l  h e a t e r  

R 
XY 

r a d i u s  of c u r v a t u r e  i n  x-y p l ane  

Rtr r a d i u s  of c u r v a t u r e  i n  t r a n s v e r s e  d i r e c t i o n  

t t ime 

U f r e e  s t ream f l u i d  v e l o c i t y  

u 
9 

v e l o c i t y  of vapor j e t  

u 
g c 

c r i t i c a l  v e l o c i t y  of vapor j e t  

u  v e l o c i t y  component i n  x d i r e c t i o n  

v v e l o c i t y  component i n  y d . i r ec t ion  

W complex p o t e n t i a l  



z complex number, x + iy 

Greek Letters 

amplitude of transverse pressure oscillations 

wave height above mean level 

wave length 

critical wave length 

"most dangerous" wave length 

Helmholtz critical wave length 

density of fluid 

density of saturated liquid and gas, respectively 

surface tension 

potential function 

stream function 

frequency 

Superscript 

prime denotes upper fluid properties 
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